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Abstract—The PERPEST model is a model that predicts the ecological risks of pesticides in freshwater ecosystems. This model
simultaneously predicts the effects of a particular concentration of a pesticide on various (community) endpoints. In contrast to
most effect models, PERPEST is based on empirical data extracted from the literature. This model is based on case-based reasoning,
a technique that solves new problems (e.g., what is the effect of pesticide A?) by using past experience (e.g., published microcosm
experiments). The database containing the past experience has been constructed by performing a review of freshwater model
ecosystem studies. This review assessed the effects on various endpoints (e.g., community metabolism, phytoplankton, and mac-
roinvertebrates) and classified them according to their magnitude and duration. The PERPEST model searchesfor anal ogoussituations
in the database, based on relevant (toxicity) characteristics of the compound. This allows the model to predict effects of pesticides
for which no effects on a semifield scale have been published. The PERPEST model results in a prediction showing the probability
of classes of effects (no, slight, or clear effects, plus an optional indication of recovery) on the various grouped endpoints. This

paper discusses the scientific background of the model as well as its strengths, limitations, and possible applications.
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INTRODUCTION

The tiered ecological risk assessment of pesticides consists
of aconservative first tier and more realistic higher tiers. Suit-
able higher-tier studies may comprise laboratory tests that fo-
cus on more realistic exposure regimes or the testing of ad-
ditional (indigenous) species, the use of computer simulation
models (population, food-web, or landscape), and experiments
in model ecosystems [1]. To this end, many microcosm and
mesocosm experiments have been performed over the last 20
years and published in the open literature. Brock et al. [2,3]
reviewed the open literature for microcosm and mesocosm
experiments on the effects of herbicides and insecticides to
establish ecological threshold values for pesticides in surface
waters and to evaluate current standard-setting methodol ogies.
The present paper presents amodel that allowsthisinformation
to be used to evaluate new cases, that is, to predict the effects
of aparticular concentration of a particular pesticide on aquatic
ecosystems.

Effects of pesticides on aguatic communities and ecosys-
tems can be predicted using large simulation models such as
food-web models [4,5]. However, ecological models often are
incomplete and usually have many uncertain parameters, mak-
ing their predictions uncertain too. In fact, experts are often
better able to predict effects of toxicants compared to these
models. Anderson [6] has shown that past cases are used as
models when trying to solve new problems. For instance, if
experts are asked what the effect of 1 ug/L of the insecticide
chlorpyrifos will be on the ecology of afreshwater ecosystem,
they will look for analogous cases, that is, experiments they
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have conducted or evaluated in the past. Obviously, the type
of experimental ecosystem, test design, endpoints, and other
factors will differ between the experiments, and the expert will
have to take this into account. In the field of artificial intel-
ligence, this process is called case-based reasoning (CBR)
[7,8]. The principle of CBR is that it retrieves similar expe-
rience (cases) about similar situations from the memory (a
database that is called the case base) and reuses this experience
to make predictions in the context of a new situation.

The present paper discusses PERPEST, a model that uses
case-based reasoning to predict the effects of a particular con-
centration of a pesticide on a defined aquatic ecosystem, based
on published information about the effects of pesticides on the
structure and function of aguatic ecosystems as observed in
semifield experiments. The CBR system consists of the da-
tabase containing this information and a search routine named
weighted analogies prediction [9]. The rationale behind
weighted analogies prediction is that it uses a few character-
istics of the question case (e.g., exposure concentration, tox-
icological mode of action, and type of ecosystem) to identify
analogous cases in the database. These analogous cases can
then be weighted and summarized in a prediction. This means
that even though no results of microcosm or mesocosm ex-
periments have been published for a particular pesticide, it is
still possible to predict its effect on a semifield scale by using
the results of experiments performed with other pesticides.

The PERPEST model can be used in ecological risk as-
sessment when uncertainties are large and data availability is
poor. The PERPEST model can then provide some indication
of the types of uncertainties that are likely to be large, and
thus of the type of data that must be gathered for a refined
risk assessment (e.g., endpoints and exposure concentrations
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Table 1. Example of two case studies, of an herbicide (atrazine) and
an insecticide (chlorpyrifos)

Atrazine Chlorpyrifos
Concentration (ug/L) 500 35
References [28-30] [31-33]
Multiple/ Single/
Exposure constant pulse
Stagnant/ Stagnant/
Type of ecosystem recirculating recirculating
Grouped endpoint (score)
Community metabolism 3 3
Phytoplankton 5
Algae and macophytes 5
Periphyton 0
Microcrustacea 5
Macrophytes 5
Rotifers 1
Zooplankton 4
Macrocrustacea 5
Macrocrustaceans
and insects 4
Insects 5
Other macroinvertebrates 1 4
Vertebrates 5 0

of interest). The model can be used in both predictive (e.g.,
effects of a new pesticide) and retrospective (e.g., measured
concentrations of a pesticide in a river) risk assessment. The
PERPEST output can be used to translate spatially and tem-
porally distributed measured or modelled concentration data
into effect concentrations, that is, it can be used as a risk
indicator. This paper first describes the case base that has been
constructed for ecological effects of herbicides and insecti-
cides, and then outlines the model itself and its optimization
to predict particular cases. Finally, the paper discusses the
model’s pros and cons, together with future developments.

THE DATABASE

The database (called the case base) consist of two data sets,
one containing the results of the review of the effects of pes-
ticides observed in semifield experiments [2,3] and one con-
taining chemical properties and ecotoxicological profiles,
based on the results of standard laboratory tests of insecticides
and herbicides. The first data set comprises case studies in
which the effect of a particular concentration of a particular
pesticide is evaluated with freshwater microcosms or meso-
cosms. Experiments were selected for evaluation if the model
ecosystem simulated a realistic freshwater community, the ex-
perimental design was appropriate (analysis of variance or
regression design), and the exposure concentrationswere clear-
ly defined. We made a distinction between systems in which
asingle (single or pulse) and those in which a repeated (mul-
tiple or chronic) dose was applied and between lentic (stagnant
or recirculating) and lotic (flow-through) systems. The exper-
iments evaluated normally comprised several cases, that is,
each concentration evaluated in an experiment represents a
separate case in the case base.

The endpoints evaluated were classified into eight different
ecological endpoint groups, which were different for insecti-
cides and herbicides (see Table 1). Within each of the eight
ecological endpoint groups, the most sensitive endpoint was
selected for assignment to an effect class. The responses ob-
served for these groups were assigned to O or to the five effect
classes, as follows. 0 = Endpoint not evaluated in the study.
1 = No effects demonstrated: no consistent adverse effectsare
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observed as a result of the treatment; observed differences
between treated test systems and controls do not show a clear
causality. 2 = Slight effects: confined responses on sensitive
endpoints (e.g., partial reduction in abundance); effects ob-
served on individual sampling dates only and/or of very short
duration directly after treatment. 3 = Clear short-term effects,
lasting less than eight weeks: convincing reductions on sen-
sitive endpoints, with recovery taking place within eight
weeks; effects observed on a sequence of sampling dates. 4
= Clear effects, recovery not studied: clear effects (e.g., severe
reductions of sensitive taxaover a sequence of sampling dates)
are demonstrated, but the monitoring of the endpoint did not
last long enough to demonstrate complete recovery within
eight weeks after the last treatment. 5 = Clear long-term ef-
fects, lasting more than eight weeks: convincing reductions on
sensitive endpoints and complete recovery of these endpoints
more than eight weeks after the last treatment; negative effects
reported over a sequence of sampling dates.

A total of 90 experiments were evaluated (113 references
published between 1980 and 1998). This evaluation resulted
in 333 cases (substance and concentration combination), with
171 evaluating the effects of herbicides and 162 evaluating
the effects of insecticides. Because eight ecological endpoint
groups were evaluated, a case base of 330 X 8 = 2,664 entries
resulted, of which 1,104 were nonzeros. Each record in the
case base is composed of the name of the chemical, the con-
centration evaluated, the reference to the open literature, type
of exposure and model ecosystem, and the effect scores for
the eight ecological endpoint groups. Examples of cases are
given in Table 1.

The second data set consists of laboratory fate character-
istics of the different pesticides and their toxicity to standard
test species. To allow comparisons between studies performed
with different herbicides or insecticides, we expressed the ex-
posure concentrations as toxic units (TU). To this end, we
divided the exposure concentration studied (usually the nom-
inal peak concentration of the pesticide in the water column)
by the corresponding geometric mean acute median effect con-
centration (EC50) value of the most sensitive standard test
species according to the Organisation for Economic Co-op-
eration and Development (Paris, France) guidelines. Inthe case
of insecticides, the most sensitive standard test species usually
was Daphnia magna [3]. For herbicides, the most sensitive
standard test algae according to the Organisation for Economic
Co-operation and Development guidelines were usually Sce-
nedesmus subspicatus or Selenastrum capricornutum [2]. By
way of example, Figure 1A and B summarizes the effects of
insecticides with an acetylcholinesterase toxicological mode
of action on microcrustacea (Fig. 1A) and of herbicides with
a photosynthesis-inhibiting toxicological mode of action on
community metabolism (Fig. 1B). The figure clearly shows a
concentration—effect relationship and lower effect concentra-
tions for long-term exposure than for short-term exposure.

Analogiesin terms of fate characteristics of pesticideswere
traced by taking into account the results of standard laboratory
fate studies, such as the median dissipation time (DT50) of
the water compartment determined in a water sediment study,
the Henry coefficient (air—water partitioning coefficient), and
the water—organic matter partitioning coefficient (Kgy,). When
available, these variables were added to the database for each
pesticide.
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Fig. 1. Summary of effects of acetylcholinesterase-inhibiting insec-
ticides on microcrustacea (A) and of photosynthesis-inhibiting her-
bicides on community metabolism (B) as observed in semifield ex-
periments. Filled circles denote exposure regimes due to a single
application; larger open circles indicate exposure due to multiple or
chronic applications. The evaluated concentrations of the various pes-
ticides are standardized on toxicity to the most sensitive standard test
species (TU,,o). See text for description of effect class. TU = toxic
unit.

CASE-BASED REASONING

Case-based reasoning is a problem-solving paradigm that
is able to utilize the specific knowledge of previously expe-
rienced, concrete problem situations (cases) to solve new prob-
lems. Case-based reasoning is an approach that enables incre-
mental, sustained learning because new experience isretained,
making it immediately available for future problems[10]. Re-
search in the early 1980s on the role of remembering earlier
situations and situation patterns in problem solving and learn-
ing formed the start of CBR in artificia intelligence [11].
Kolodner [12] incorporated Schank’s theory of problem solv-
ing and learning in the first CBR system that incorporated
knowledge on the various travels and meetings of the former
U.S. Secretary of State, Cyrus Vance. Since then, CBR studies
have been driven by two primary motivations: to model human
reasoning and learning and to make artificial intelligence sys-
tems more effective [8]. Case-based reasoning can be divided
into two classes: interpretative CBR and problem-solving
CBR. The former uses prior cases as reference points for clas-
sifying or characterizing new situations, whereasthelatter uses
prior cases to suggest solutions that might apply to new cir-
cumstances [7]. The present paper focuses on interpretative
CBR. A very important feature of CBR is its ability to learn.
Adding present experience to the case base allows improved
predictions to be madein the future. Early applications of CBR
include diagnostics (clinical audiology, heart failure, building
defects, and aircraft fault diagnosis and repair), legal reasoning
(criminal sentencing, patent law, injuriesto workers, and build-
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ing regulations), arbitration (dispute resolution), design (land-
scape, mechanical design, and conceptual design), and plan-
ning (warfare planning and manufacturing planning problems)
[13]. Well-known applications of interpretative CBR in med-
icineinclude hel ping medical personnel to assess patient status,
assisting in establishing diagnoses, and facilitating the selec-
tion of a course of therapy [14]. In this example, a case is
defined as a set of variable values or features collected from
a patient during a consultation or visit. This case can be com-
pared with previously collected cases (patients) incorporated
in a case base [15], from which the most similar cases can be
extracted by applying, for instance, the nearest-neighbor tech-
nique. These similar cases can then be used to calculate some
useful statistics such as similaritiesin diagnosis and successful
therapy between the cases, and these statistics can be used for
decision-making. Case studies play an important and useful
role in medical education, and for good reason.

Case-based reasoning consists of four processes: retrieval,
analogy, adaptation and learning. These are not independent
processes. Retrieval of casesfrom the case base that are similar
to the question case is driven by the definition of analogy [8].
A proper description of a CBR model should include detailed
information about these processes (see next section).

THE PERPEST MODEL

This section provides definitions of the four basic CBR
processes (retrieving cases, finding analogous cases, summa-
rizing and optimizing the prediction, and learning) in PER-
PEST.

Retrieving cases

Description of question case. The question case is the ex-
isting case for which risk must be estimated or the hypothetical
case for which risk must be predicted. The minimum infor-
mation needed to describe the question case is a chemical
name, a type of pesticide, a concentration, and an EC50 for
the most sensitive standard test species. The EC50 for the most
sensitive test speciesis needed to standardize the concentration
for toxicity, that is, to rescale the concentrationsto TU to allow
the exposure to be compared with the cases in the case base.
Optional parameters, which can be used to narrow the search
or weight the analogous cases, are toxicological mode of ac-
tion, molecule group, DT50, Ky, Henry coefficient, exposure
regime, and type of ecosystem. These optional parameters en-
able the user to focus on chemicals with similar environmental
effect and fate characteristics or ecosystems with similar struc-
ture while making the prediction.

Selection of part of the case base. Parts of the case base
can be excluded from the search for analogies on the basis of
characteristics of the type of chemical, exposure, and ecosys-
tem. Thus, it is possible to exclude from the analysis all cases
that differ from the question case by more than a factor of 10
TU, or al experiments performed in a lotic ecosystem.

Transformation, standardization, and weighting of vari-
ables. Before they are used to calculate similarity values be-
tween cases, it is useful to transform the different variables.
The concentrations are first standardized on their toxicity to
standard test species, and then log transformed by default.
Other available transformations are log percentage, inverse,
square root, and angular. Subsequently, all variables are stan-
dardized to mean O and standard deviation 1 by default to
make them all equally important, that is, to remove arbitrar-
iness in terms of measuring units. The other standardization
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methods available are no standardization and MinMax stan-
dardization. In the MinMax method, the variables are scaled
between the minimum and maximum values in the case base,
with the minimum being allocated a value of 0 and the max-
imum a value of 1 [9].

After transformation and standardization, the different var-
iables can be weighted by multiplying each with a predefined
weighting factor, to give more weight to important variables.
These weighting factors can be optimized by using controlled
random search (see next section).

Finding analogous cases

Within the PERPEST model, one can choose between four
different dissimilarity indicesto calcul ate the distance between
the question case and the retrieved cases. The default index
is the Euclidean distance (ED), the others are city block dis-
tance (CB), cord distance (CD), and Chebychev distance
(ChD). The ED is the index most frequently used in ecology.
The ED is the distance in the n-dimensional space in which
each variable is one dimension of the space [16]. The ED is

defined as
E (ykl YkJ

in which y, isthe transformed and standardized variable k in case
i and y; is the variable k in the question case j, both multiplied
by the weight of the variable k. The parameter n is the number
of cases. The CB is the sum of the absolute differences between
all variables [9]. The CB gives dightly lower weight to the out-
lying variables than the ED does and is defined as

CB = E Iy — ijl
ic1

The CD is geometrically represented by the distance between
the points where the sample vectors intersect a unit sphere
[16]. The CD gives more weight to qualitative aspects than
the other indices. The CD is defined as

ITh Y
" B

The ChD is the maximum difference between variables. It
gives even more weight to a outlying variable than the ED.
The ChD is defined as

ChD = MAXly, — ijl

Summarizing and optimizing the prediction

In our model, the prediction phase consists of summarizing
the most similar cases in a prediction and creating the output.
The prediction involves calculating some kind of weighted
mean values for al endpoints and all effect classes for the
most similar cases. For this purpose, the response variables of
the n nearest cases are weighted in such away that theinfluence
of the cases declines with their dissimilarity from the question
case. This prediction method is called the inverse distance
method

; (Yu-DP)

>, Dr

prediction =

-
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Legend
D 1 no effect

2 slight effect

Algae and Community Fish (n=32) Insects
macrophytes metabolism (n=52)
(n=45) (n=43)

@ﬁ%&

Macrocrustacea Microcrustacea Other Rotifers
(n=33} (n=52} macro-invertebrates (n=46)
(n=35)

E 3 clear effect,
recovery <8 weeks

|||| 4 clear effect,
recovery unknown

W 5 clear effect,
recovery >8 weeks

Fig. 2. Example of output from the model for predicting the ecological
risks of pesticides (PERPEST) summarizing the prediction.

in which D isthe chosen distance measure and p is the distance
weighting power (negative). This prediction is done for each
effect class of each grouped endpoint.

A bootstrapping procedure calculates the confidence inter-
vals for the different effect classes and endpoints [17]. In this
resampling technique, many (default 500) random data sets
are generated by selecting cases at random, with replacement.
We opt for a conservative approach by selecting a smaller
number of cases than in the original database (default 75%).
Each data set is used to produce a prediction. The generated
distribution of predictions serves as an estimate of the uncer-
tainty. The 2.5 and 97.5% percentiles from this bootstrap dis-
tribution serve as the 95% confidence interval.

Summarizing prediction. The prediction is summarized in
a pie chart for each group of endpoints (see Fig. 2 for an
example). These pie charts indicate the probability that the
indicated changes in the grouped endpoints will fit into a par-
ticular effect class. This figure shows, for instance, that a 1%
chance exists that an application of 10 png/L chlorpyrifos will
have no effect on the invertebrate group of Insecta (effect class
1). The figure aso indicates that a large probability (92%)
exists that clear effects will occur (effect classes 3, 4, and 5).
For each class, the bootstrapped 95% confidence limits are
presented in a table.

Goodness of fit. The performance of the prediction method
is evaluated by using leave-one-out cross-validation [18], a
technique in which one case is removed from the database,
after which the effect on each endpoint group is predicted by
using al other cases. The prediction is compared with the
removed case. This procedure is repeated for all cases and in
our case the log (likelihood) is determined as a goodness-of-
fit measure because our effect classes are binary data

Optimizing the prediction. The CBR methodology implies
many subjective choices of the ranges and weights of param-
eters. We used the controlled random search procedure[19,20]
to optimize these choices. The basis of this method is that the
weights of each variable are tried at random within certain
limits. The log (likelihood) of each trial is then determined by
using the above cross-validation procedure. The controlled
random search algorithm is used to find the optimum ranges
and weights, that is, the values with the maximum goodness
of fit.

Learning

As time passes, more experiments will be conducted and
described in the open literature. Of all publications reviewed
for our case base, one-third were published between 1995 and
1998, which means that PERPEST has gained one-third of its
knowledge during this period. The results of newly published
experiments can easily be added to PERPEST to improve fu-
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Table 2. Properties of the herbicide methabenzthiazuron relevant to the PERPEST model for predicting
the ecological risks of pesticides

Variable Value
CAS Chemical abstract service (CAS) registration number 18691-97-9
DT50 Median dissipation time in water phase of

water—sediment experiment —
FullName Full name of active ingredient M ethabenzthiazuron
Henry Henry coefficient —
Kom Organic matter partitioning coefficient —
L(E)C50 Median lethal concentration (LC50) or median

effect concentration (EC50) of most

susceptible standard test species
For example, photosynthesis inhibitor

Mode of action
Molecule group
Type sub

For example, triazin(on)e

Insecticide, herbicide, or fungicide

42.4
Photosynthesis inhibitor
Urea
Herbicide

ture predictions. After new cases have been added, the weights
and ranges of parameters can be optimized by using the new
case base.

EXAMPLE OF THE APPLICATION OF THE MODEL

Asan example of the application of the model, we predicted
the ecological effects of methabenzthiazuron, a substance that
has not yet been included in the database. Wellmann et al. [21]
studied the effects of a single application of this herbicide on
community metabolism (dissol ved oxygen and pH) and species
belonging to the phytoplankton, macrophyte, and zooplankton
communities. The evaluated concentrations ranged from 10 to
3,371 pg/L. The physicochemical and biological parameters
were sampled from days O through 133 after application.

The first step in the prediction procedure is to enter the
relevant data of the new substance in the database (Table 2).
The second step is to optimize the weights and other properties
by using controlled random search and cross-validation. A prob-
lem of optimizing was that effects of several parameters were
correlated; the same goodness of fit could be obtained with
several different parameter settings. Therefore, we did not op-
timize all parameters, but set several parametersto fixed values.
Also, at least one weight of the conditional variable should be
fixed, to avoid many possible combinations of weights yielding
the same model. The absolute values of the weights are irrel-
evant; it is the relative values that matter. After optimization,
the log (likelihood) was improved from —606 for the default
settings, to —477 for the optimized model (Table 3).

In addition to the optimization, we conducted a simple sen-
sitivity analysis: 2,000 random parameter sets were created,

Table 3.

varying the parameters within the same ranges as those used
for the optimization. Subsequently, the log (likelihood) of each
parameter set was calculated by using cross-validation. The
sensitivity of the goodness of fit to parameter changes was
calculated as the correlation between the values of each pa-
rameter and the log (likelihood) of the resulting model. The
range of the TU, the maximum distance (for scaling), and the
distance power were the most sensitive parameters; theweights
of the variables were less critical.

We used the resulting optimized model to predict the effect
of methabenzthiazuron on community metabolism, macro-
phytes, phytoplankton, and zooplankton (Fig. 3). The PER-
PEST model predicted a dose-response relationship for the
ecological endpoints. However, the exact concentration at
which the effect starts was more difficult to predict. The no-
observed-effect concentrations (NOECs) found in the semi-
field experiment for community metabolism and primary pro-
ducers correspond with the predicted probability of clear ef-
fects, that is, approximately 50% (Fig. 3A to C). Above these
NOEC:s, clear effects were found and predicted by PERPEST
with a probability of more than 60%. Clear effects on zoo-
plankton were recorded in the microcosm study at a concen-
tration corresponding with the predicted probability of clear
effects, that is, approximately 30% (Fig. 3D). The predicted
and observed effects are in reasonable agreement.

DISCUSSION

In PERPEST, the concentrations evaluated in the micro-
cosm and mesocosm experiments are standardized on the tox-
icity of the pesticide. This is done to make the exposure con-

Improvement in fit (log [likelihood]) caused by optimization. The correlation between the

value of the parameter and the log (likelihood) is shown in the last column. These coefficients have
been determined with the goodness of fit of 2,000 random parameter sets. High absolute values indicate
a high sensitivity of the model to this parameter

Default settings Optimized Correlation

Log (likelihood) —606 —477

Number of cases for averaging 50 37 —0.05
Distance power -2 -0.52 0.23
Minimum distance (fixed in optimizing) 1 1 -0.11
Maximum distance (fixed in optimizing) 10 10 0.26
Weight of toxic unit 1 6.3 -0.03
Weight of mode of action (fixed in optimizing) 1 1 0.04
Weight of molecule group (fixed in optimizing) 1 0 0.00
Weight of type of experiment (fixed in optimizing) 1 0 -0.01
Weight of exposure (fixed in optimizing) 1 0 -0.03
Relative range of toxic unit 10 15.3 0.54
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centrations comparabl e between different pesticides. The stan-
dardization is based on the geometric mean EC50 of the most
susceptible standard test species. The argument can be made
that the EC50 of the susceptible group would reflect the tox-
icity of the pesticide better, because more information on the
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community is used to derive this concentration. For this EC50,
the median hazard concentration (HC50) and HC5S derived by
using the species sensitivity distribution concept can be used.
However, these effect concentrations are not derived in a uni-
form way and also are not readily available [22].

Pesticides have different toxicological profiles, even if, for
instance, the molecule group to which they belong is similar.
For instance, the toxicity of an insecticide to Daphnia and fish
may be very similar or may differ greatly. This differencein
toxicity becomes important, for instance, in predicting the ef-
fects on fish when using concentrations standardized on the
toxicity for Daphnia. In such cases, it may be useful to add
more toxicological information than just the geometric mean
EC50 of the most sensitive standard test species. This toxi-
cological information can be used to look for analogies in
toxicological profiles of the different pesticides evaluated. This
information is also needed when the effects of fungicides are
added to the database. It is often not clear which (group of)
endpoints are sensitive to fungicides [23], so one should pref-
erably add as much available toxicity information as possible
to the routine that searches for analogous cases. Also rec-
ommended is inclusion of field-derived DT50 values instead
of laboratory-derived fate characteristics in the weighting of
the different cases. However, such values are not widely avail-
able, and also depend on the ecosystem structure. Therefore,
these field dissipations should be determined for the same
experiments as those evaluated in Brock et al. [2,3].

In addition to predicting the effects of a single concentra-
tion, PERPEST is aso able to construct concentration—effect
curves for a range of concentrations of a particular pesticide.
These curves describe the relationship between the concen-
tration of achemical and the probability that a particular effect
(e.g., clear effects on insects) will occur. This concentration—
effect relationship for field effects allows better comparisons
between laboratory- and field-derived effect curves than the
use of point estimates such as NOEC g gems [24,25]. Thisfull-
curve comparison of laboratory and field effects enhances the
verification of ecological risk assessment concepts based on
laboratory toxicity data (e.g., species sensitivity distribution
concept). Another advantage of these full-curve descriptions
of field effects is that trigger values can be derived, based on
a particular probability (e.g., 5%) that a particular effect (e.g.,
clear effects on a susceptible group) will occur.

This paper has presented a model that predicts the effects
of pesticides based on historical, empirical data. However, it
may be questioned whether enough empirical dataare available
to allow such predictions to be made. The current shortage of
empirical data is reflected in the 95% confidence intervals of
the predictions, which are usually quite large when probabil-
ities around 50% are predicted. On the other hand, models of
biological systems often areincomplete, either because a com-
plete state description for such systems cannot be provided or
because the numbers and types of interactions between system
elements are poorly understood [26]. Therefore, Scheffer [27]
proposed an integration of experimental data and models by
starting from the assumption that the effect to be predicted
will be analogous to that of the same measure elsewhere and
by using quantitative models only to correct for expected dif-
ferences. Branting et al. [26] called this integration of CBR
and model-based reasoning model-based adaptation, and de-
scribed an example involving a system for rangeland grass-
hopper management. In the light of the tiered approach that
has been adopted in risk assessment and the availability of
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models, this integration looks promising for the field of eco-
logical risk assessment of pesticides for their registration on
the European market [1].
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